4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2
Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid
C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular
Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4.
6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7
Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C*
-Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10
Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11
Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12
Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory
for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory
for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex
Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for
Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6
Index Theory for Polycircular Domains 455 References 462 Index of
Symbols and Notations 471 In trod uction Toeplitz operators on the
classical Hardy space (on the I-torus) and the closely related
Wiener-Hopf operators (on the half-line) form a central part of operator
theory, with many applications e. g., to function theory on the unit
disk and to the theory of integral equations.