Description and Properties of Multipliers.- Trace Inequalities for
Functions in Sobolev Spaces.- Multipliers in Pairs of Sobolev Spaces.-
Multipliers in Pairs of Potential Spaces.- The Space M(B m p B l p )
with p > 1.- The Space M(B m 1 ? B l 1).- Maximal Algebras in Spaces of
Multipliers.- Essential Norm and Compactness of Multipliers.- Traces and
Extensions of Multipliers.- Sobolev Multipliers in a Domain, Multiplier
Mappings and Manifolds.- Applications of Multipliers to Differential and
Integral Operators.- Differential Operators in Pairs of Sobolev Spaces.-
Schrödinger Operator and M(w 1 2 ? w ?1 2).- Relativistic Schrödinger
Operator and M(W 1/2 2 ? W ?1/2 2).- Multipliers as Solutions to
Elliptic Equations.- Regularity of the Boundary in L p -Theory of
Elliptic Boundary Value Problems.- Multipliers in the Classical Layer
Potential Theory for Lipschitz Domains.- Applications of Multipliers to
the Theory of Integral Operators.