In many industrial applications, the existing constraints mandate the
use of controllers of low and fixed order while typically, modern
methods of optimal control produce high-order controllers. The authors
seek to start to bridge the resultant gap and present a novel
methodology for the design of low-order controllers such as those of the
P, PI and PID types. Written in a self-contained and tutorial fashion,
this book first develops a fundamental result, generalizing a classical
stability theorem - the Hermite-Biehler Theorem - and then applies it to
designing controllers that are widely used in industry. It contains
material on:
- current techniques for PID controller design;
- stabilization of linear time-invariant plants using PID controllers;
- optimal design with PID controllers;
- robust and non-fragile PID controller design;
- stabilization of first-order systems with time delay;
- constant-gain stabilization with desired damping
- constant-gain stabilization of discrete-time plants.