This book covers recent advances in neural technology that provide for
enhancements for brain function. It addresses a broad range of neural
phenomena occurring in the brain circuits involved in perception,
cognition, emotion and action, that represent the building blocks of
behavior and cognition. Augmentation of brain function can be achieved
by using brain implants for recordings, stimulation, or drug delivery.
Alternative methods include employing brain-machine interfaces, as well
as noninvasive activation of certain brain areas. This volume evaluates
existing methods of brain augmentation while discussing the brain
circuitry and neuronal mechanisms that make augmentation possible.
This volume offers novel insights into brain disorders, and explores new
devices for brain repair while also addressing the philosophical and
ethical implications of brain augmentation. The information in this book
is relevant to researchers in the fields of neuroscience, engineering,
and clinical practice.
Advance Praise for Modern Approaches to Augmentation of Brain
Function:
"This impressive book by leading experts in neuroscience and
neuroengineering lays out the future of brain augmentation, in which the
human mind and machine merge, leading to a rapid exponential growth of
the power of humanity."
Ray Kurzweil, best-selling author, inventor, entrepreneur and a
recipient of the National Medal of Technology and Innovation (1999), and
the Lemelson-MIT Prize (2001)
"This book employs a holistic approach in covering the recent advances
in the fields of neuroscience, neuroinformatics, neurotechnology and
neuro-psycho-pharmacology. Each chapter of the book covers major aspects
of modern brain research in connection with the human mind and behavior,
and is authored by researchers with unique expertise in their field. "
Ioan Dumitrache, Prof. Dr. Eng. Faculty of Computer Science,
Polytechnic University of Bucharest, Bucharest, Romania
"This book presents compelling perspectives on what interactive
neuroscience will look like in the future, delving into the innovatory
ideas of a diverse set of neuroscientists, and speculating on the
different ways computer chips implanted in the brains of humans can
effect intelligence and communication."
György Buzsáki, MD, PhD is the Biggs Professor of Neuroscience, NYU
School of Medicine, New York, NY