Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach (2004)Hardcover - 2004, 29 June 2004

Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach (2004)
Qty
1
Turbo
Ships in 2 - 3 days
In Stock
Free Delivery
Cash on Delivery
15 Days
Free Returns
Secure Checkout
Buy More, Save More
Part of Series
Statistics for Social and Behavioral Sciences
Part of Series
Statistics for Social Science and Behavorial Sciences
Part of Series
Statistics in Social Sciences and Public Policy
Part of Series
Statistics for Social Science and Public Policy
Print Length
382 pages
Language
English
Publisher
Springer
Date Published
29 Jun 2004
ISBN-10
0387402756
ISBN-13
9780387402758

Description

This edited volume gives a new and integrated introduction to item response models (predominantly used in measurement applications in psychology, education, and other social science areas) from the viewpoint of the statistical theory of generalized linear and nonlinear mixed models. Moreover, this new framework allows the domain of item response models to be co-ordinated and broadened to emphasize their explanatory uses beyond their standard descriptive uses.
The basic explanatory principle is that item responses can be modelled as a function of predictors of various kinds. The predictors can be (a) characteristics of items, of persons, and of combinations of persons and items; they can be (b) observed or latent (of either items or persons); and they can be (c) latent continuous or latent categorical. Thus, a broad range of models is generated, including a wide range of extant item response models as well as some new ones. Within this range, models with explanatory predictors are given special attention in this book, but we also discuss descriptive models. Note that the "item responses" that we are referring to are not just the traditional "test data," but are broadly conceived as categorical data from a repeated observations design. Hence, data from studies with repeated observations experimental designs, or with longitudinal designs, may also be modelled.
The book starts with a four-chapter section containing an introduction to the framework. The remaining chapters describe models for ordered-category data, multilevel models, models for differential item functioning, multidimensional models, models for local item dependency, and mixture models. It also includes a chapter on the statistical background and one on useful software. In order to make the task easier for the reader, a unified approach to notation and model description is followed throughout the chapters, and a single data set is used in most examples to make it easier to see how the many models are related. For all major examples, computer commands from the SAS package are provided which can be used to estimate the results for each model. In addition, sample commands are provided for other major computer packages.
Paul De Boeck is Professor of Psychology at K.U. Leuven (Belgium), and Mark Wilson is Professor of Education at UC Berkeley (USA). They are also co-editors (along with Pamela Moss) of a new journal entitled Measurement: Interdisciplinary Research and Perspectives. The chapter authors are members of a collaborative group of psychometricians and statisticians centered on K.U. Leuven and UC Berkeley.

Product Details

Book Edition:
2004
Book Format:
Hardcover
Country of Origin:
US
Date Published:
29 June 2004
Dimensions:
23.39 x 15.6 x 2.39 cm
ISBN-10:
0387402756
ISBN-13:
9780387402758
Language:
English
Location:
New York, NY
Pages:
382
Publisher:
Springer
Weight:
752.96 gm

Related Categories


Need Help?
+971 6 731 0280
support@gzb.ae

About UsContact UsPayment MethodsFAQsShipping PolicyRefund and ReturnTerms of UsePrivacy PolicyCookie Notice

VisaMastercardCash on Delivery

© 2024 White Lion General Trading LLC. All rights reserved.