differenzierbar, wenn es eine in Xo stetige Abbildung x -+,1. von U in
den dual en Raum Hom (JRn, JR) gibt, so daB /(x)=f(xo)+,1x(x-x ) o gilt.
Diese Definition ilbertragt sich auf den Fall, wo Xo Punkt eines
separierten topologischen Vektorraumes E ist und die Werte von f in
einem ebensolchen Vektorraum F liegen. Man hat dazu den Raum Hom (E, F)
der stetigen linearen Ab bildungen von E in F mit einer Pseudotopologie
zu versehen 1: Man betrachtet z. B. genau die Filter auf Hom (E, F) als
gegen 0 kon vergent, die folgende Eigenschaft haben: Fur jeden Filter
auf Emit m. -+ 0 gilt ( ) -+ 0 in F. Dabei ist m der Filter der Nullumge
bungen in JR, m. wird von den N A mit N E m und A E erzeugt, ( ) von den
L (A) = u A. (A) mit L E und A E . Man kann nun die Differenzierbarkeit
au wie oben definieren, nur ist unter x -+,1x jetzt eine in Xo stetige
Abbildung von U in Hom (E, F) zu verstehen. Man zeigt: Da die naturliche
Abbildung Hom(E, F)XE-+F stetig ist, ist,1xo eindeutig bestimmt und kann
als Ableitung von f im Punkt Xo bezeichnet werden. Auch jetzt folgt aus
der Differenzierbarkeit die Stetigkeit; es gilt die Kettenregel."