A Speiser

(Author)

Die Theorie Der Gruppen Von Endlicher Ordnung: Mit Anwendungen Auf Algebraische Zahlen Und Gleichungen Sowie Auf Die Kristallographie (5. Aufl. 1980. SoftPaperback - 5. Aufl. 1980. Softcover Reprint of the Original 5th 1980, 23 August 2014

Die Theorie Der Gruppen Von Endlicher Ordnung: Mit Anwendungen Auf Algebraische Zahlen Und Gleichungen Sowie Auf Die Kristallographie (5. Aufl. 1980. Soft
Qty
1
Turbo
Ships in 2 - 3 days
In Stock
Free Delivery
Cash on Delivery
15 Days
Free Returns
Secure Checkout
Buy More, Save More
Turbo Shipping
Part of Series
Lehrbucher Und Monographien Aus Dem Gebiete der Exakten Wis
Part of Series
Mathematische Reihe
Part of Series
Lehrbücher Und Monographien Aus Dem Gebiete der Exakten Wiss
Print Length
271 pages
Language
German
Publisher
Birkhauser
Date Published
23 Aug 2014
ISBN-10
3034853874
ISBN-13
9783034853873

Description

I. Zur Vorgeschichte der Gruppentheorie . . . . . . . 1 II. Ableitung des Gruppenbegriffs aus den Permutationen 4 1. Kapitel. Die Grundlagen. § 1. Die Postulate des Gruppenbegriffs 10 § 2. Die Gruppentafel 12 § 3. Untergruppen . . . . 14 § 4. Zyklische Gruppen . . 16 § 5. Beispiele von Gruppen 20 § 6. Elementenkomplexe 25 2. Kapitel. Normalteiler und Faktorgruppen. § 7. Normalteiler. . . 28 § 8. Faktorgruppen. . . . . . . . . 31 § 9. Isomorphe Gruppen. . . . . . . 33 § 10. Der Hauptsatz tiber Normalteiler . 35 § 11. Kompositionsreihen. 38 § 12. Hauptreihen. . . . . . . 40 § 13. Kommutatorgruppen . . . 43 § 14. Ein Theorem von Frobenius 44 3. Kapitel. Abelsche Gruppen. § 15. Basis einer Abelschen Gruppe . . . . . . . . . . . . . 46 § 16. Die Invarianten einer Abelschen Gruppe. . . . . . . . . 50 § 17. Untergruppen und Faktorgruppen einer Abelschen Gruppe. 52 § 18. Die Galoisfelder und Reste nach Primzahlpotenzen 54 § 19. Existenz der Galoisfelder . . . . . . . . . . . . . . . 57 4. Kapitel. Konfugierte Untel'gl'uppen. § 20. Normalisatoren . . . . . . . . . . . . . 61 § 21. Zerlegung einer Gruppe nach zwei Untergruppen 62 5. Kapitel. Sylowgl'uppen und p-Gruppen. § 22. Sylowgruppen ........ . 64 § 23. Norrnalisatoren der Sylowgruppen . . . . . . . 66 Inhaltsverzeichnis. x § 24. Gruppen. deren Ordnung eine Primzahlpotenz ist 69 § 25. Spezielle p-Gruppen . . . . . . 71 6. Kapitel. S ymmetrien del' Ornamente. § 26. Vorbemerkungen. . 76 § 27. Die ebenen Gitter 76 § 28. Die Streifenornamente 80 § 29. Die Flachenornamente 85 § 30. Beispiele von Fiachenornamenten 91 § 31. Die Bewegungsgruppen der Ebene mit endlichem Fundamentalbereich 95 7. Kapitel. Die Krystallklassen. § 32. Die Raumgitter . . 98 102 § 33. Die Krystallklassen . 8. Kapitel. Permutationsgruppen.

Product Details

Author:
A Speiser
Book Edition:
5. Aufl. 1980. Softcover Reprint of the Original 5th 1980
Book Format:
Paperback
Country of Origin:
NL
Date Published:
23 August 2014
Dimensions:
24.41 x 16.99 x 1.52 cm
ISBN-10:
3034853874
ISBN-13:
9783034853873
Language:
German
Location:
Basel
Pages:
271
Publisher:
Weight:
453.59 gm

Related Categories


Need Help?
+971 6 731 0280
support@gzb.ae

About UsContact UsPayment MethodsFAQsShipping PolicyRefund and ReturnTerms of UsePrivacy PolicyCookie Notice

VisaMastercardCash on Delivery

© 2024 White Lion General Trading LLC. All rights reserved.