Gero Brockschnieder

(Author)

Asymptotics of Cubic Number Fields with Bounded Second Successive Minimum of the Trace FormPaperback, 1 September 2014

Asymptotics of Cubic Number Fields with Bounded Second Successive Minimum of the Trace Form
Qty
1
Turbo
Ships in 2 - 3 days
In Stock
Free Delivery
Cash on Delivery
15 Days
Free Returns
Secure Checkout
Buy More, Save More
Turbo Shipping
Print Length
88 pages
Language
English
Publisher
Diplom.de
Date Published
1 Sep 2014
ISBN-10
3956366808
ISBN-13
9783956366802

Description

We present a new way of investigating totally real algebraic number fields of degree 3. Instead of making tables of number fields with restrictions only on the field discriminant and/or the signature as described by Pohst, Martinet, Diaz y Diaz, Cohen, and other authors, we bound not only the field discriminant and the signature but also the second successive minima of the trace form on the ring of integers O(K) of totally real cubic fields K. With this, we eventually obtain an asymptotic behaviour of the size of the set of fields which fulfill the given requirements. This asymptotical behaviour is only subject to the bound X for the second successive minima, namely the set in question will turn out to be of the size O(X^(5/2)). We introduce the necessary notions and definitions from algebraic number theory, more precisely from the theory of number fields and from class field theory as well as some analytical concepts such as (Riemann and Dedekind) zeta functions which play a role in some of the computations. From the boundedness of the second successive minima of the trace form of fields we derive bounds for the coefficients of the polynomials which define those fields, hence obtaining a finite set of such polynomials. We work out an elaborate method of counting the polynomials in this set and we show that errors that arise with this procedure are not of important order. We parametrise the polynomials so that we have the possibility to apply further concepts, beginning with the notion of minimality of the parametrization of a polynomial. Considerations about the consequences of allowing only minimal pairs (B, C) (as parametrization of a polynomial f(t)=t^3+at^2+bt+c) to be of interest as well as a bound for the number of Galois fields among all fields in question and their importance in the procedure of counting minimal pairs, polynomials, and fields finally lead to the proof that the number of fields K with second successive minimum M2(K)

Product Details

Author:
Gero Brockschnieder
Book Format:
Paperback
Country of Origin:
US
Date Published:
1 September 2014
Dimensions:
21.01 x 14.81 x 0.53 cm
ISBN-10:
3956366808
ISBN-13:
9783956366802
Language:
English
Pages:
88
Publisher:
Weight:
127.01 gm

Need Help?
+971 6 731 0280
support@gzb.ae

About UsContact UsPayment MethodsFAQsShipping PolicyRefund and ReturnTerms of UsePrivacy PolicyCookie Notice

VisaMastercardCash on Delivery

© 2024 White Lion General Trading LLC. All rights reserved.