This book focuses on several areas of intense topical interest related
to applied spectroscopy and the science of nanomaterials. The eleven
chapters in the book cover the following areas of interest relating to
applied spectroscopy and nanoscience:
- Raman spectroscopic characterization, modeling and simulation studies
of carbon nanotubes,
- Characterization of plasma discharges using laser optogalvanic
spectroscopy,
- Fluorescence anisotropy in understanding protein conformational
disorder and aggregation,
- Nuclear magnetic resonance spectroscopy in nanomedicine,
- Calculation of Van der Waals interactions at the nanoscale,
- Theory and simulation associated with adsorption of gases in
nanomaterials,
- Atom-precise metal nanoclusters,
- Plasmonic properties of metallic nanostructures, two-dimensional
materials, and their composites,
- Applications of graphene in optoelectronic devices and transistors,
- Role of graphene in organic photovoltaic device technology,
- Applications of nanomaterials in nanomedicine.