Preface.- Introduction.- Varieties and quasivarieties in general
languages.- Equaclosure operators.- Preclops on finite lattices.- Finite
lattices as Sub(S,∧, 1,����): The case J(L) ⊆ ���� (L).- Finite lattices
as Sub(S,∧, 1,����): The case J(L) ̸⊆ ���� (L).- The six-step program:
From (L, ����) to (Lq(����), Γ).- Lattices 1 + L as Lq(����).-
Representing distributive dually algebraic lattices.- Problems and an
advertisement.- Appendices.